| $n$ | $f^{(n)}(x)$ | $f^{(n)}(0)$ | $$\quad a_n={f^{(n)}(0)\over n!}\quad$$ |
| $0$ | $\sin x$ | $0$ | $0$ |
| $1$ | $\cos x$ | $1$ | $${1\over 1!}$$ |
| $2$ | $-\sin x$ | $0$ | $0$ |
| $3$ | $-\cos x$ | $-1$ | $$-{1\over 3!}$$ |
| $4$ | $\sin x$ | $0$ | $0$ |
| $5$ | $\cos x$ | $1$ | $${1\over 5!}$$ |
| $6$ | $-\sin x$ | $0$ | $0$ |
| $7$ | $-\cos x$ | $-1$ | $$-{1\over 7!}$$ |
| $n$ | $g^{(n)}(x)$ | $g^{(n)}(0)$ | $$\quad a_n={g^{(n)}(0)\over n!}\quad$$ |
| $0$ | $\cos x$ | $1$ | $${1\over 0!}$$ |
| $1$ | $-\sin x$ | $0$ | $0$ |
| $2$ | $-\cos x$ | $-1$ | $$-{1\over 2!}$$ |
| $3$ | $\sin x$ | $0$ | $0$ |
| $4$ | $\cos x$ | $1$ | $${1\over 4!}$$ |
| $5$ | $-\sin x$ | $0$ | $0$ |
| $6$ | $-\cos x$ | $-1$ | $$-{1\over 6!}$$ |
| $7$ | $\sin x$ | $0$ | $0$ |