Kleinere Schriftzeichen   

Check der Beziehungen $A^{-1}A=\mathbf{1}$ und $AA^{-1}=\mathbf{1}$

Mit $$A=\left(\begin{array}{cc} A_{11} & A_{12}\\ A_{21} & A_{22} \end{array}\right)$$ und $$A^{-1}={1\over A_{11}A_{22}-A_{12}A_{21}}\left(\begin{array}{cc} A_{22} & -A_{12}\\ -A_{21} & A_{11} \end{array}\right)$$ ist $$A^{-1}A={1\over A_{11}A_{22}-A_{12}A_{21}} \left(\begin{array}{cc} A_{11} & A_{12}\\ A_{21} & A_{22} \end{array}\right) \left(\begin{array}{cc} A_{22} & -A_{12}\\ -A_{21} & A_{11} \end{array}\right)=$$ $$={1\over A_{11}A_{22}-A_{12}A_{21}}\left(\begin{array}{cc} A_{11}A_{22}-A_{12}A_{21} & -A_{11}A_{12}-A_{12}A_{11}\\ A_{21}A_{22}-A_{22}A_{21} & -A_{21}A_{12}+A_{22}A_{11} \end{array}\right)=$$ $$={1\over A_{11}A_{22}-A_{12}A_{21}}\left(\begin{array}{cc} A_{11}A_{22}-A_{12}A_{21} & 0\\ 0 & A_{11}A_{22}-A_{12}A_{21} \end{array}\right)=$$ $$=\left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right)$$ und $$AA^{-1}= \left(\begin{array}{cc} A_{22} & -A_{12}\\ -A_{21} & A_{11} \end{array}\right){1\over A_{11}A_{22}-A_{12}A_{21}} \left(\begin{array}{cc} A_{11} & A_{12}\\ A_{21} & A_{22} \end{array}\right)=$$ $$={1\over A_{11}A_{22}-A_{12}A_{21}}\left(\begin{array}{cc} A_{22}A_{11}-A_{12}A_{21} & -A_{22}A_{12}-A_{12}A_{22}\\ -A_{21}A_{11}+A_{11}A_{21} & -A_{21}A_{12}+A_{11}A_{22} \end{array}\right)=$$ $$={1\over A_{11}A_{22}-A_{12}A_{21}}\left(\begin{array}{cc} A_{11}A_{22}-A_{12}A_{21} & 0\\ 0 & A_{11}A_{22}-A_{12}A_{21} \end{array}\right)=$$ $$=\left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right)\,{\sf\small,}$$ womit die Beziehungen $A^{-1}A=\mathbf{1}$ und $AA^{-1}=\mathbf{1}$ überprüft sind.